
National Aeronautics and

Space Administration



Ames Research Center





Moffett Field, California 94035-1000




R. E. McFarland

NASA Technical Memorandum 110437

Finite Element Aircraft
Simulation of Turbulence

February 1997



National Aeronautics and

Space Administration



Ames Research Center





Moffett Field, California 94035-1000




NASA Technical Memorandum 110437

February 1997

Finite Element Aircraft
Simulation of Turbulence

R. E. McFarland, Ames Research Center, Moffett Field, California



iii

NOMENCLATURE

b The span length

f s g s h s( ) ( ) ( ), , Dryden u, v, and w turbulence filters in Laplace form

F z G z H z( ) ( ) ( ), , Dryden u, v, and w turbulence filters as z-transforms

V Limited horizontal velocity

L L Lu v w, , Turbulence characteristic lengths

l s m s n s( ) ( ) ( ), , Conventional model p, q, and r filters in Laplace form

L z M z N z( ) ( ) ( ), , Conventional model p, q, and r filters as z-transforms

T The cycle time

dp Distance between right and left wing centers of pressure along span

dq Distance from fuselage center of pressure to the center of pressure of the
horizontal tail

dr Distance from fuselage center of pressure to the center of pressure of the
vertical tail

X Y, Independent random number sequences with Gaussian distribution for use in
the correlation algorithm X Y= =( )η η3 4,

x y, Dependent number sequences with Gaussian distribution from correlation
algorithm

w wR L, Uncorrelated X  and Y  filtered by H z( )

  

w wr ,
l

Right and left wing center of pressure vertical turbulence velocities as
developed by the correlation algorithm. x  and y  filtered by H z( )

ηi Unity-variance, zero-mean independent random noise sequences with
Gaussian distribution

ρ The spanwise vertical correlation coefficient

p q ra a a, , Rotational sums of stochastic turbulence and discrete gusts

p q rc c c, ,  Conventional model rotational stochastic turbulence components
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p q rs s s, , FEAST model rotational stochastic turbulence components

u v wM M M, , Fuselage center of pressure u, v, and w translational velocities

u v wa a a, , Translational sums of stochastic turbulence and discrete gusts

u v wc c c, , Conventional model translational stochastic turbulence components

u v ws s s, , FEAST model translational stochastic turbulence components

u v wg g g, , Translational discrete gust components

p q rg g g, , Rotational discrete gust components

σ σ σu v w, , Turbulence dispersions
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SUMMARY

A turbulence model has been developed for realtime aircraft simulation that accommodates
stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is
applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations.
Vehicle angular activity in response to turbulence is computed from geometrical and temporal
relationships rather than by using the conventional continuum approximations that assume uniform
gust immersion and low frequency responses. By using techniques similar to those recently
developed for blade-element rotor models, the angular-rate filters of conventional turbulence models
are not required.

The model produces rotational rates as well as air mass translational velocities in response to both
stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may
be correlated with significant terrain features or ship models.

Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian
interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc,
and this distribution is used to compute roll responses. Air mass velocities are applied at significant
centers of pressure in the computation of the aircraft’s pitch and roll responses.

DISCUSSION

The Simulation of Rotor Blade Element Turbulence (SORBET) model was developed (ref. 1) in
order to accommodate stochastic and discrete gust velocity components at elements along the rotor
blades of a helicopter simulation. This model received improved pilot comments over an
implementation of the conventional MIL SPEC body-fixed formulation (ref. 2) for low-speed and
low-altitude flight. The introduction of air mass velocities at the blade elements obviates the angular-
rate filters, because the moment arms to the aerodynamic points of application are implemented.
This feature has the added benefit that gusts may be input as a function of terrain, so that angular as
well as translational disturbances may then be correlated with the terrain profile. This is quite
important for the simulation of low speed flight of various vehicles in the vicinity of buildings,
ships, etc.

Recent research has shown that air wake and turbulence modeling require improvement. “A key
issue with these turbulence models is the way in which they are applied to the aircraft. In all cases
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this was through the aircraft center of gravity. More complex models would require a more effective
interface with the aircraft” (ref. 3). Insofar as communicating terrain-related information to the
aircraft model, two options are available. “When airflow gradients are present that are significant
over distances that are similar to the main dimensions of the aircraft, then it becomes necessary to
consider introducing forces and moments due to gradients either by (1) defining gradients at the
single point and using appropriate derivatives of forces and moments, or (2) calculating local forces
and moments on different parts of the aircraft and integrating these to obtain total forces” (ref. 4).

In this material, atmospheric disturbances are separated into stochastic turbulence and discrete gusts.
Stochastic turbulence is treated in some detail, and differences from the conventional formulation
are noted in angular responses. Turbulence is developed from the conventional atmospheric
relationships (ref. 2), except that rotational terms are developed by a distribution of translational
velocities over the specific vehicle’s effective aerodynamic surfaces using transport delays; a novel
Gaussian distribution algorithm is used in the development of roll rate as a function of the two-
dimensional vertical velocity field. A comparison is made to the conventional system.

Discrete gusts and turbulence magnitudes may be defined from a computational fluid dynamics
analysis of flow over a terrain profile. It is assumed here that such a database is available; the
remaining problem is to apply this database to an aircraft simulation model in real time, thereby
correlating aircraft responses to turbulence as a function of the terrain.

For a distributed aerodynamic model the appropriate rotational behavior of the vehicle arises
naturally from force differentials of the various aircraft components, provided only that the
translational atmospheric disturbances are properly distributed to the appropriate centers of pressure
(CP) of these components. Such was the case in the SORBET model, which used a rotating blade-
element model of the UH60 helicopter, with an equal-annuli distribution of aerodynamic centers
along the blades. However, for total force and moment models, typically using aerodynamic
coefficients, the vehicle’s rotational behavior in response to discrete gusts requires geometrical
considerations, which are reviewed herein.

The realtime transfer of database information to the simulation model, generally including vector
fields of translational discrete gust velocities and turbulence dispersions, may also include
atmospheric gradient data. This implies a single-point transfer (probably the vehicle center of
gravity) for each compute cycle. This formulation appears to be computationally efficient. However,
atmospheric gradients derived from a grid of translational velocity differences are independent of a
specific vehicle’s geometry and aerodynamics. In the development of vehicle rotational rates this
must be considered (see the discussion, ref. 5). Furthermore, using gradients, the implied
interpolation between data points is likely to smooth significant disturbance parameters unless a very
large (dense) database is available. Spacing as small as one or two meters have been suggested in
regions of [flow field] instability (ref. 4). Consider that in a helicopter simulation of landing on a
ship, “changes in mean airflow in the model appeared too gradual, particularly around the edges of
the hanger” (ref. 4). “It should be mentioned here that the aerodynamic effects of gust gradients are
not quite the same as the effects of the airplane angular velocities” (ref. 5).

In this paper a similar technique to that developed in reference 1 is used to distribute turbulence
components to the centers of pressure of a conventional aircraft. A model is created called Finite
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Element Aircraft Simulation of Turbulence (FEAST). With minor modification these techniques
may be applied to helicopter simulations that use a rotor disc model.

The compelling reason to use a model like this is to accommodate a component level model of the
airframe aerodynamics. The distribution of translational turbulence components as well as discrete
gusts to the various aerodynamic centers would then of itself induce the correct rotational behavior
of the vehicle. For a coefficient model that does not distribute the aerodynamics, however, we may
approximate the rotational behavior of airframes by considering only the vehicle-specific moment
arms to the effective aerodynamic locations. Generating rotational terms for arbitrary aircraft is then
reduced to a geometry problem.

The correct moment arms to use in such a formulation would seem to be those that replicate the
outputs of the conventional turbulence model (ref. 2) in standard flight regimes. It will be seen,
however, that forcing such a correspondence does not produce realistic moment arms for use in the
FEAST model, which is developed from elementary mathematical relationships. Rather, when the
correct separations of centers of pressure are utilized in the FEAST model, the rotational treatment
in MIL SPEC is brought into question, in particular for the higher frequency regions. This is
examined in detail.

In the FEAST model it is maintained that “this idealization of the turbulence field permits
idealization of the airframe, for calculation of the (generalized) aerodynamic forces and moments, as
a two-dimensional lifting surface (in the x-y plane) for the vertical component wg  and as one-
dimensional force distributions (along the x axis) for the horizontal components ug  and vg ” (ref. 5).
An exponential correlation form is assumed between vertical turbulence velocities. As is shown, this
form produces considerably more roll activity at low altitudes than does the conventional model. The
exponential correlation form is certainly not optimal, but improvements in this form are beyond the
scope of this paper. Referring to scale lengths of a couple of hundred feet, Etkin stated that at “such
small scales, the variation in gust velocity over the airplane becomes important, and analytical
methods of some refinement and complexity are indicated” (ref. 6).

The techniques developed in this paper for stochastic turbulence are applicable to either a gradient or
distributed finite element model. Terrain related gusts are treated using the specific vehicle
geometry, and such a formulation should collapse to the gradient method in the mathematical limit,
providing that the specific vehicle geometry is considered.

Geometry and Transport Delays

The FEAST model uses the MIL SPEC translational filters for stochastic turbulence, but does not
use the angular filters (ref. 2). These filters are replaced by using the geometrical separation of
centers of pressure, and a novel spanwise correlation factor, as developed from a two-dimensional
vertical turbulence field. In obviating the pitch and yaw angular filters, the model uses transport
delays for the emersion rate into the turbulent field.

The use of a two-dimensional vertical turbulence field permits the development of roll activity as a
function of the spanwise distribution of velocities. “...when structural modes are significant, the
exact distribution of the turbulence velocity components over the airframe should be considered ...



4

For purposes of MIL-F-8785B, it is acceptable to consider ug  and vg  as being one-dimensional
functions of x, but wg  must be considered two-dimensional, a function of both x and y, for
evaluation of the aerodynamic forces and moments ... The spanwise (y) variation of wg  often
produces significant lateral responses of the airplane and is, therefore, always to be considered,
except possibly for very slender configurations when approved by the procuring activity.” (Ref. 5.)

Similar to the techniques used in SORBET, a turbulence “onset line” is defined perpendicular to the
aircraft body axis in the lateral plane, along which the outputs of the translational turbulence filters
are computed. For convenience, this line is placed at the fuselage center of pressure. Stochastic
turbulence components are developed in the body frame, and the onset line is perpendicular to the
longitudinal body axis. This line is useful in considering the propagation of stochastic turbulence to
the horizontal and vertical tail centers of pressure as a function of the vehicle velocity. Discrete
terrain related gusts are later shown to be treated differently from stochastic contributions because
they are instantaneously applicable at distributed locations.

Turbulence velocities uM  and vM  are developed (M=middle line) at the fuselage CP. The vertical
velocity at the fuselage CP, wM , is produced from two uncorrelated Gaussian inputs given by X  and
Y , as will be shown. Additionally, from these uncorrelated inputs, correlated wr  and 

  

w
l

 at the right
and left wing centers of pressure (along the span) are developed. Only four independent noise
sources are required, as in the conventional MIL SPEC (ref. 2) formulation, and a distribution occurs
to the points of application to account for both the geometry and transport lags.

As the vehicle travels through a frozen field of turbulence, the history of the turbulence encountered
at a downstream point is equivalent to the history at the fuselage CP, with a time of application
equivalent to a transport delay. This delay is inversely proportional to the horizontal aerodynamic
velocity1 of the aircraft V , and is given by t d Vq q=  for the vertical field that causes pitch rate, and
by t d Vr r=  for the horizontal field that causes yaw rate. For example, the lateral turbulence
velocity applied to the vertical tail’s center of pressure is given by v tM r( ). This is merely a
restatement of Taylor’s frozen field hypothesis, which states that temporal and spatial relationships
are proportional.

The yaw rate (due to the tail’s side velocity) is developed by the difference v t vM r M( ) − ( )0  divided
by the fuselage-to-vertical-tail separation dr . The sign convention results from the fact that the
translational turbulence and gust velocities are air mass velocities. The pertinent continuum
relationships are developed in an early MIL SPEC document (ref. 5) which produced the partial
derivatives:

p
w

yg
g= − ∂

∂

q
w

xg
g= ∂

∂

1  “V” is actually the forward velocity of the aircraft, with a lower limit discussed in appendix 1.
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r
v

xg
g= − ∂

∂

If the velocity of the air mass is positive downward on the right wing (and absent at the left wing),
then the rotationally invariant vehicle appears to roll left. If the air mass velocity at the C.G. is
positive downward (and it is absent at the horizontal tail) then the rotationally invariant vehicle
appears to be pitching up. If the velocity of the air mass at the C.G. is positive rightward (and it is
absent at the vertical tail) then the rotationally invariant vehicle appears to be yawing left. The
translational turbulence and gust velocities of the air mass are subtracted from the vehicle velocities
in simulation, whereas these rotational terms are added to certain aerodynamic terms (ref. 5).

The rotational terms may be applied to a C.G.-based aerodynamic model. For a distributed
aerodynamic model the translational velocities at various aerodynamic centers will induce the proper
rotations by the development of force differentials.

For the computation of roll rate, two correlated vertical velocities are produced along the right and
left wings, at their centers of pressure. The distance dp is the lateral separation of these two points.
The correlated vertical velocities at the wing CPs are developed from two uncorrelated random
sequences. As will be shown, these uncorrelated vertical velocities are also used for the computation
of the fuselage CP vertical velocity wM .

The generalization of this geometry to a helicopter model requires different points of application.
These points could include four locations about the hub, typically at radii of about seventy-five
percent of the rotor radius (ref. 7). In this fashion the rotational gradients due to turbulence on the
rotor disc may be computed, as well as the influence on the C.G. and tail rotor.

The Conventional Stochastic Model

The conventional (MIL SPEC) turbulence model is presented in block diagram form in figure 1.
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wc s( )

qc s( )

rc s( )
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n1 s( )
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n 3 s( )

n 4 s( )

σ
u

σ
v

g s( )

l s( )

m s( )

n s( )

uc s( )

pc s( )

1
2

σ
w

1
2

σ
w

h s( )

f s( )

Figure 1. Conventional model.
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The sums and differences of random variables in this figure are used for convenience. The basis for
these operations is given in the next section.

The Dryden form for the longitudinal, lateral, and vertical turbulence filters (that produce u v wc c c, , )
are given in Laplace form as follows (refs. 1 and 2):

f s
V L

s V L
u

u
( ) = +

2 π

g s
V L s V L

s V L

v v

v

( ) =
+[ ]

+[ ]
3 3

2

π

h s
V L s V L

s V L

w w

w

( ) =
+[ ]

+[ ]
3 3

2

π

and the roll, pitch, and yaw rotational filters (that produce p q rc c c, , ) are given by

l s
b V

L s V bw
( ) = ( )

+( )
π

π
4 0 8

4

7 6

1 3

.

m s
s b

s V b
( ) = +

π
π

4
4

n s
s b

s V b
( ) = −

+
π
π

3
3

where the quantity b  is the wing span. The conventional model’s rotational filters have a history of
being brought into question. For example, the quantity b  has even been replaced by the total aircraft
length in the pitch and yaw filters (ref. 8).

In the conventional model, it should be noticed that roll rate is independent of vertical activity at all
flight conditions (one-dimensional field). The pitch and yaw rates consist of differentiated vertical
and lateral velocities, using first-order filters with gains that are the inverse of the aerodynamic
velocity. The z-transform solutions to the above Laplace filters are given in appendix 2.

The translational turbulence velocities are the same in both the conventional and FEAST
formulations, where the point of application is the fuselage center of pressure. The rotational
formulations are different. In particular, FEAST’s roll rate uses certain properties of random
variables, as examined in the following section. Two correlated vertical velocity sequences are
developed at the wing centers of pressure, and an exponential form is assumed for the correlation
between the velocities. The moment arm between these aerodynamic centers is then used to develop
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roll rate. Pitch and yaw rates in the FEAST model are developed from transport delays acting on the
vertical and lateral velocity histories.

Figure 2 summarizes all of the relationships in z-transform notation for the conventional model
given above, where its outputs have the subscript c. In addition, this figure introduces the FEAST
model, where its outputs have the subscript s.

Appendix 1 is provided to show an implementation of the transport delays that are indicated in the
FEAST paths of this figure.

+

+

+

-

η1 z( )

η 2 z( )

η3 z( )

η 4 z( )

L z( )

M z( )

N z( )

qs z( )

rs z( )

uc z( )= us z( )

vc z( ) = vs z( )

wc z( ) = ws z( )

qc z( )

rc z( )

1
dq

G z( )σ
v

π
T

σ w
π

2T

σ w
π

2T

H z( )

H z( )

σ
u

π

T
F z( )

1
dr

ps z( )

pc z( )

2 1 − ρ( )
d p

z−t
r

T − 1

1 − z
−t

q
T

Figure 2. The conventional model and the FEAST model.

Correlating Variables

In order to create two correlated sequences, two independent, zero mean Gaussian sequences X{ }
and Y{ }  are first developed, both with the same standard deviation, σ σ σX Y= = . These may be
created in realtime simulation by using software2 such as XNORM©. Two correlated sequences x{ }
and y{ } with the same standard deviations σ σ σx y= =  (and all other moments) may then be
created as follows. The correlation coefficient for the sequences x{ } and y{ } is defined by

ρ
σ

σ σ ρ= ≤ ≤( )xy

x y
                        0 1

2 The copyrighted Ames Research Center standard simulation software is available to industry.
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where only direct relationships are permitted. This is accomplished by excluding inverse
relationships in the selected correlation coefficient, and the lower limit of zero is proper rather than
negative unity (ref. 9).

Given the correlation coefficient ρ  as shown above, two symmetrically correlated sequences x y,{ }
may be computed from two uncorrelated sequences X Y,{ } with identical statistical properties by the
functions:

x X Y= + + −( ) + + − −( )[ ]1
2

1 1 1 1ρ ρ ρ ρ

y X Y= + − −( ) + + + −( )[ ]1
2

1 1 1 1ρ ρ ρ ρ

and their correlation coefficient is ρ .

The proof is as follows: E XY( ) = 0 for independent variables, and E X E Y2 2 2( ) = ( ) = σ . The
expected values for the dependent variables are given by:

E x E X Y

E X Y

2 2

2 2 2 2

2 2

1
4

1 1 1 1

1
4

1 1 1 1

1
4

1 1 1 1

{ } = + + −( ) + + − −( )[ ]


= + + −( ) + + − −( ){ }
= +( )+ −( )+ +( )+ −( )[ ] =

ρ ρ ρ ρ

ρ ρ ρ ρ

σ ρ ρ ρ ρ σ

E y E X Y

E X Y

2 2

2 2 2 2

2 2

1
4

1 1 1 1

1
4

1 1 1 1

1
4

1 1 1 1

{ } = + − −( ) + + + −( )[ ]


= + − −( ) + + + −( ){ }
= +( )+ −( )+ +( )+ −( )[ ] =

ρ ρ ρ ρ

ρ ρ ρ ρ

σ ρ ρ ρ ρ σ

E xy E X Y X Y

E X Y

{ } = + + −( ) + + − −( )[ ] + − −( ) + + + −( )[ ]{ }
= + + −( ) + − −( ) + + − −( ) + + −( ){ }
= + + −( )

1
4

1 1 1 1 1 1 1 1

1
4

1 1 1 1 1 1 1 1

1
2

1 1

2 2

2

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρ

σ ρ ρ 11 1 2+ − −( )[ ] =ρ ρ σ ρ

Thus

ρ
σ

σ
σ σ ρ= { } = ≤ ≤( )E xy xy

x y
2 0 1              
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In the FEAST model this result is used to produce correlated turbulence velocities at the wing’s
spanwise centers of pressure by relating3 the vertical velocities x wr⇒  and 

  

y w⇒
l

 as linearly
filtered random variables. These are computed from the uncorrelated X wR⇒  and Y wL⇒  as
shown below. An exponential correlation form is used:

E w r w r r e
r

L0 0
2( ) +( )[ ] = −σ

where for this model L  is the characteristic length4 of the vertical component of turbulence and r  is
the distance between the two points of interest (the difference between the wing centers of pressure,
dp). Thus, the correlation coefficient becomes

ρ = −e
d p

Lw

and the criterion for only positive correlation is satisfied due to the lower limit of the MIL SPEC
definition (ref. 2) for low-altitude turbulence models

L h
h ft

ft h ft
h ft

w =
<

≤ ≤
>







10

1000

10
10 1000

1000
   

where h is the vehicle altitude. For a center of pressure difference dp = 32.17 ft, the correlation co-
efficient would be as shown in figure 3.
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Figure 3. Wing CP correlation coefficient.

3 The random sequences first pass through the H(z) atmospheric filter.  Gaussian variables that pass through linear filters
remain Gaussian variables.
4 The characteristic length is the spatial separation of two points where the correlation of velocity components is
assumed to vanish.
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The vertical turbulence velocity at the fuselage CP may also be computed from the uncorrelated
variables. This quantity wM  results from the correlation algorithm by setting ρ = 1, a condition
called for when the distance between the two points of interest vanishes r =( )0 . Using the uncorre-
lated quantities X  and Y  we see that this produces the linear combination for the centerline vertical
turbulence velocity

1
2

1
2

Y X w w wM L R+[ ] ⇒ = +[ ]

which is the Gaussian centroid, and all statistical moments are retained, as in the case of the
turbulence at the wing span positions. X  and Y  are filtered to produce wR  and wL .

To complete the picture for characteristic lengths, the MIL SPEC restricted lower limits for the
horizontal components are also used, and it is noted (ref. 2) that the off-axis dispersions are deter-
mined once the vertical component σ w  is selected.

L L
h

h
ft h ftu v= =

+( )
≤ ≤( )

0 177 0 000823
10 10001 2. . .

σ σ σ
u v

w

h
ft h ft= =

+( )
≤ ≤( )

0 177 0 000823
10 10000 4. . .

Using the relationships of this section, the spanwise center-of-pressure vertical velocities w zr( ) and

  

w z
l
( )  for the right and left wings, and the midline vertical velocity w zM ( ), are created from two

independent noise sources. An example time history of these velocities is presented in figure 4,
where the correlation coefficient used was ρ = 0.6525.

V
er

tic
al

 V
el

oc
ity

dp wr

wM

wl
Time

Figure 4. Vertical turbulence at wing and fuselage CPs.

The velocities in the above figure were created at an altitude of 40 feet, an aerodynamic velocity
of 5 ft/sec, and dp = 17.08 ft. The CP vertical velocity histories were used to produce the roll rate
given in figure 5.
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Figure 5. Resultant roll rate history.

Note that correlation between the vertical velocities at the wing CP locations is only a statistical
measure. It does not provide any indication of the direction of roll with respect to the fuselage
vertical velocity. Indeed, roll is completely uncorrelated with the fuselage vertical velocity, as the
following expected value shows:

E p w E w w w ws M L R L R{ } ∝ −[ ] +[ ]{ } = − =σ σ2 2 0

Vertical Velocity

Consider the vertical velocities wL  and wR , which are uncorrelated Gaussian random variables with
the same dispersion σ , and zero mean value. Such variables with identical statistics have the
following properties:

E W W

E W W E W W

E W W E W W

E W W W W E W W

L R

L R L R

L R L R

L R L R L R

{ } =

+[ ]{ } = +{ } =

−[ ]{ } = +{ } =

+[ ] −[ ]{ } = −{ } =

0

2

2

0

2 2 2 2

2 2 2 2

2 2

σ

σ

The expected values of both the sums and differences produce new random variables that have twice
the variance of the originals. Hence, we may create new random variables with the same dispersion
σ  by dividing by the square root of two. That is, in terms of discrete, unity-variance random
variables

η η η
5

4 3

2
z

z z( ) = ( ) + ( )

η η η
6

4 3

2
z

z z( ) = ( ) − ( )
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and from the above properties the sum represented by η5 z( ), the Gaussian centroid, is uncorrelated
with the difference represented by η6 z( ). For practical purposes the random turbulence vertical
velocity may be created in z-transform notation from the sum

w z
T

H z
z z

T
H z zw w( ) = ( ) ( ) + ( )





= ( ) ( )σ π η η σ π η4 3
52

where the system function for vertical velocity in Laplace notation is

w s h s
V
L

s V L

s V L
w w

w

w

w

( ) = ( ) =
+( )
+( )

σ σ π
3 3

2

The autospectrum or power spectral density (one-sided PSD) of the Dryden form of the vertical
response is given by (ref. 2)

Φw
w w

w w

V V L

L V L
ω

σ ω

π ω
( ) =

+( )
+( )

3 32 2 2 2

2 2 2 2

“The total area under the autospectral density function is the variance of the data plus the square of
the mean value of the data” (ref. 9). Since the mean value of the random input is zero, the variance
of this autospectrum is given by the frequency integral from zero to infinity.
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∫ ∫Φ

Rotational Variances

In appendix 3, the conventional formulation’s rotational relationships are reviewed and the rotational
variances are shown to be

σ σ π π
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w

wL b
2

20 4
42

3

4
3

= 





.
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Also, in appendix 4 the FEAST model’s rotational relationships are developed. The rotational
variances are shown to be
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Equating Variances

Equating the variances between the conventional and FEAST models would seem to be an excellent
technique for quality control. In pitch and yaw the sharper responses of the FEAST model could be
used to justify the lower-frequency continuum responses of the conventional model, and in roll the
influence of the vertical correlation relationships could be examined to determine the altitude where
behavior was similar.

Unfortunately, as determined in this section, the technique of equating the variances produces
completely unrealistic CP separation distances.

For comparison of the two formulations with equal variances, the distance between the wing centers
of pressure for use in the FEAST model may be determined if the span ( b ) and the characteristic
length ( Lw ) are known. Solving for dp in the roll dimension, this requires the solution to the
following transcendental equation, obtained by equating σ σpc ps
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Similarly, equating σ σqc qs
2 2=  and σ σrc rs

2 2=  also produces transcendental equations
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which may be used to solve for the other two CP differences. These three equations are independent
of both variances and vehicle velocity. They are easily solved using Newton’s iteration (ref. 10).
Very few cycles are required.

For b=32.17 ft and Lw =250 ft ( Lu=791.48 ft) Newton’s iteration produces the values given in
figure 6 for the center-of-pressure separation distances dp, dq , and dr .
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Figure 6. Computing the required CP differences using equal variances.

As shown in figure 7, the separation distances vary somewhat when equal variances are used
( b=32.17 ft).
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Figure 7. Separation distances vs. altitude for equal variances.

The CP separation distances for pitch and yaw are fairly constant for high-altitude flight, although
for spectral correspondence with the conventional formulation the required CP values for the FEAST
model are too high (not physically credible) for typical aircraft geometry. The required separation
distance for roll correspondence is also too high, except that it appears to approach a reasonable
value for high-altitude flight.

Although the variances are independent of vehicle velocity, the autospectra are not. Selecting
both a low and moderate velocity case for illustration, the following six figures show the spectral
differences between the conventional and FEAST models, where the CP separation distances
have been computed from the equal-variance relationships. In these examples where Lw  = 250 ft
( Lv  = 791.48 ft), the selected value for σ w  = 1 ft/sec, which produces σ v  = 1.468 ft/sec. The
first three figures are for a velocity of 5 ft/sec.
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Figure 10. Yaw autospectra (V = 5 ft/sec) using equal variances.

The second set of three figures is for a velocity of 100 ft/sec.
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Figure 12. Pitch autospectra (V = 100 ft/sec) using equal variances.
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Figure 13. Yaw autospectra (V = 100 ft/sec) using equal variances.

Using Reasonable CP Separation Distances

For an aircraft with a span of 32.17 ft, the computed dp, dq , and dr  required to obtain equal
variances are clearly too large. An example of an aircraft that has this particular wing span is the
XV-15. Data is available for the center-of-pressure distances for this aircraft. Considering the CP of
the fuselage given by 24.416 ft, for the XV-15 the differences in these distances are

d ft

d ft

d ft
b ft

p

q

r

=
= − =
= − =

=

17 08

46 666 24 416 22 25

47 501 24 416 23 085
32 17

.

. . .

. . .
.

We may investigate the changes in FEAST’s autospectra using these values. As above, both low and
moderate speed cases are shown in the following six figures. The first three figures are for a velocity
of 5 ft/sec.
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Figure 15. Pitch autospectra (V = 5 ft/sec) using CP distances.
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The second set of three figures is for a velocity of 100 ft/sec.
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Figure 17. Roll autospectra (V = 100 ft/sec) using CP distances.
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Figure 18. Pitch autospectra (V = 100 ft/sec) using CP distances.
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From these figures we see that the pitch and yaw spectra in the FEAST formulation are extended in
the frequency domain, and they have larger dispersions because of this. The roll spectrum has less
bandwidth, but a larger dispersion. These phenomena are well within a pilot’s bandwidth, and would
thus impact simulation results. The resultant rotational dispersions are compared to the conventional
dispersions in the following three figures. σc  is the conventional model’s dispersion and σ s is the
FEAST model’s dispersion.
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Step Responses through the Turbulence Models

The conventional rotational turbulence model uses only the wing span parameter, where the value
b  = 32.17 ft corresponds to the XV-15 aircraft. When the FEAST model is used, and it is
statistically required to produce the same angular dispersions as the conventional model, un-
realistic CP differences were computed, given by dp = 33.39 ft, dq  = 81.07 ft, and dr  = 61.39 ft.
For the XV-15 aircraft, the smaller values of dp = 17.08 ft, dq  = 22.25 ft, and dr  = 23.09 ft are
known, where the span length is also given by b  = 32.17 ft. These three configurations produce
three different step responses, given in the following three figures. These responses were created
at an altitude of 250 feet, and a vehicle velocity of 5 ft/sec.
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Figure 25. Yaw rate, step input.

From an examination of these figures the conventional model is shown to be a low frequency
approximation to the behavior computed in the FEAST model. The artifact of setting the dispersions
equal and then computing the required CP separation distances produces somewhat similar pitch and
yaw responses, but FEAST’s roll response is larger.

In all cases it is seen that the conventional model has less rotational activity than the FEAST model,
and this is especially true if the correct CP distances are used.

Although step responses are not particularly revealing in terms of responses to random data, these
figures do indicate that the conventional model’s rotational responses may only be valid for low
frequency behavior.

Time Response Comparisons

In the following material the XV-15 aircraft’s CP separation distances are used in the FEAST model,
and the XV-15 aircraft’s span length is used for the conventional model. The velocity is 5 ft/sec, and
time histories are presented for two different altitudes. Identical random sequences were used to
drive both formulations.
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Figure 26. Rotational turbulence.
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It should be noticed that the scales used in these figures for the low altitude cases are much larger
than those used for the high altitude cases.

The FEAST model roll behavior tends to approach the conventional model roll behavior for high
altitude flight. Pitch and yaw responses, however, are generally larger for the FEAST model.

In reference 1, a technique was used to distribute random turbulence over the UH60 helicopter’s
rotor disc. It ensured that the dispersion was identical at all rotor blade elements by using an
algorithm that is equivalent to the one developed herein for roll activity. It did not assume any
particular correlation form. Because the UH60 simulation is a distributed aerodynamic model,
individual element forces were computed from extensive aerodynamic tables, and moments were
induced from the rotating frame geometrical relationships. The results of this SORBET simulation
model, which had extensive piloted testing, may be used to reveal a feature in common with the
FEAST model. Although pilot opinion was generally favorable for the SORBET model, the
following quote indicates that the turbulence dispersion should be reduced for low velocity flight
(which implies low altitude). From reference 1:

“Pilots generally agreed that the turbulence magnitude should be a function of velocity.
Above 40 knots, the subjective values for light and moderate turbulence were selected as
σ w  = 5 ft/sec and 8 ft/sec, respectively. Near hover, pilots selected standard deviations that
were half these values. The reason for this is unknown, and should be investigated further.”

The FEAST model’s increased angular dispersions of figures 20–22 are thus an approximation to
what would occur if a distributed aerodynamic model were used, and the objectionable magnitudes
may be isolated to the translational spectra at low velocities and altitudes. The integrals of these
spectra (the translational variances), however, are selected, and they are independent of velocity and
altitude. Hence, it is suggested that the translational variances themselves should have some
functional decrease with altitude (in the low altitude region). This is strongly suggested (ref. 2) in a
graph of σ w  versus altitude, which is unfortunately applicable to “medium/high altitude only.”
Clearly, further research is required to determine the proper functionality for low altitude flight.

Discrete Gust Contributions

The literature is replete with papers dealing with mapping the environment around ships (refs. 11–13).
Also, current projects at Ames Research Center include terrain mapping of significant features of a
visual data base to correlate gusts to these features using computational fluid dynamics (ref. 14). The
mapping functions are exceedingly complex; these complexities are avoided here by an example using
a simple terrain related gust model. The FEAST model produces complex atmospheric/vehicle motion
in response to a simple terrain related model.

Gusts are assumed to be created in a frame of reference corresponding to the visual model, and
transformed to the instantaneous distributed centers of pressure. Terrain correlated gusts may be
formulated to produce representative angular activity if they are applied at the pertinent CPs. A
system that uses this geometry requires the transmittal of seven gust components from the
atmospheric model to the aircraft model. These consist of one u-gust, two v-gusts, and four w-gusts.
The fuselage CP and the CPs of the tail and wing are the pertinent points. The quantities required
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each cycle time are: ug 0( ) , vg 0( ), v dg r( ), wg 0( ), w dg p+( )1
2 , w dg p−( )1

2  and w dg q( ). The center-
of-gravity translational discrete gusts are then the values with the arguments of zero (the CG is very
close to the CP). The rotational contributions are then given by the equations

p
w d w d

dg
g p g p

p
=

−( ) − +( )1
2

1
2

q
w w d

dg
g g q

q
=

( ) − ( )0

r
v d v

dg
g r g

r
=

( ) − ( )0

An example using these discrete gust equations is given in appendix 5.

The fuselage CP vertical discrete gust could be approximated by the average of the wing CP gusts,
which would reduce the required number of gust transmitted quantities to six.

w
w d w d

g
g p g p≈

−( ) + +( )1
2

1
2

2

The total contributions to the atmospheric model are given by sums of the stochastic turbulence and
discrete gust velocities, such as u z u z u za s g( ) = ( ) + ( ) and p z p z p za s g( ) = ( ) + ( ).

CONCLUSIONS

A generic turbulence and gust model has been developed for aircraft simulation, where both the
translational and rotational components are computed. This model, called FEAST, accommodates
stochastic turbulence and distributed discrete gusts as a function of the terrain, while the required
aircraft-specific parameters are related to the vehicle geometry. FEAST delivers rotational stochastic
components that are extended in the frequency domain beyond those delivered by the conventional
model.

New discrete techniques for the computation of rotational rates are introduced. A correlation
coefficient based upon the physical separation of aerodynamic centers, and a two-dimensional
vertical turbulence field are used in the computation of roll rate. Filtered random noise sources are
propagated in time by use of interpolated transport delays. For the computation of pitch rate, the
Gaussian centroid vertical velocity of the field influences the centers of pressure of the fuselage and
the horizontal tail as a function of vehicle velocity. Similarly, the vertical tail’s center of pressure is
used for the computation of yaw rate.
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The FEAST model should be useful for low speed and low altitude flight simulation. It uses the
specific vehicle geometry in the computation of rotational responses to turbulence, and gusts as a
function of the terrain. The state-space techniques given for the discrete implementation of this
model are computationally efficient, and deliver stable outputs for all stable inputs regardless of the
required cycle time.
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APPENDIX 1

Interpolation and the Circular Buffers

The pitch center-of-pressure difference dq  may be larger than the yaw center of pressure difference
dr , as is assumed in this appendix. Regardless, the larger value is used to compute the minimum
aerodynamic velocity that must be imposed in order to retain all of the required vertical and lateral
velocity data in buffers of size N . In order to accomplish this we have

V
d

N T
q> −( )1

The velocity used throughout this paper is assumed to conform to this inequality, resulting in a
minimum velocity of a couple of feet per second using reasonable buffer length and cycle time
parameters. We may then develop an integer index kq  with the following limits5:

0 1≤ = 





< −k
d
VT

Nq
q

with remainder βq  given by

0 1≤ = − <βq
q

q
d
VT

k

The lower velocity limit assures us that if the first ( n = 0 ) cell of a buffer contained the current time
point’s fuselage CP data, then we could interpolate within the buffer to find the horizontal tail’s CP
vertical velocity data by use of

w
d
VT

w k w kq
q q q q







= −[ ] ( ) + +( )1 1β β

and find the required end-point values, regardless of the aerodynamic velocity (above the minimum).
Similarly, if the yaw CP difference is smaller than the pitch CP difference, then the same minimum
velocity is used such that the lateral inequalities become

0 1

0 1

≤ = 





< −

≤ = − <

k
d
VT

N

d
VT

k

r
r

r
r

rβ

and the vertical tail’s CP lateral velocity data may be obtained from

5 Using the “floor” or “intier” operation (least integer).
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v
d
VT

v k v kr
r r r r





 = −[ ] ( ) + +( )1 1β β

The buffers are initially full of velocity data. This may be accomplished by a negative-indexing
initializing scheme. Using the filtered random inputs, first the last cell ( N −1) is filled followed by
( N − 2), etc., until the index becomes (0). In simulation this requires N  passes through the
turbulence equations (initial condition mode) before realtime operations are begun (operate mode).
The first storage cell in realtime is then also6 N −1, and thereafter, a decrement continues each cycle
time for the entire run, with a modulus of N .

n n Mod N n N
n

N
⇒ −( ) ( ) = −( ) − −





1 1
1

The “right arrow” is here read “becomes”; at the transition point this produces

0 0 1 0 1
0 1

1
1

1⇒ −( ) ( ) = −( ) − −





= − − −





= −Mod N N
N

N
N

N

effectively completing the circle. The circular buffers each require only one store operation every
cycle time, into the cell designated as n . The next higher indexed cell (ModN) is always the cell
from the previous deposit, so this scheme is sufficient for linear interpolation of the delayed vertical
and lateral velocity values.

From the above preliminaries, the entire procedure is given below in twelve steps for depositing the
current filter outputs into the circular buffer (where these values are the fuselage CP velocities), and
retrieving the vertical and lateral velocity at the horizontal and vertical tail centers of pressure.

Step n
n n
N n

1
1 1
1 1

( ) ⇒
− ≥
− <





Step 2( ) Deposit current filter outputs into w n( )  and v n( ) .

Step k
d
VTq

q3( ) = 





Step
d
VT

kq
q

q4( ) = −β

Step m n k N
n k

Nq q
q5( ) = + −

+





6 Not really required as long as the buffer is full and the correct index is retained in transferring to operate mode.
Initializing just requires at least N cycles.
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APPENDIX 2

z-Transform Solutions

For discrete implementation of the translational filters using either of the two models a zero-order
hold formulation is typically used, as shown by the three z-transform relationships:
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where the coefficients are:
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The difference equations that result from the z-transforms are driven by zero-mean, unity variance
discrete Gaussian noise sequences ηk  (k=1, 2, 3, 4) with amplitude range {–3.45, 3.45}, which
preserves 99.94% of the continuous total probability density function. These derivations assume the
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utilization of the realtime XNORM© Gaussian generation software, with zero mean and unity
standard deviation.

The conventional model’s rotational terms are developed below to make a comparison with angular
outputs of the FEAST model. The rotational terms require three z-transforms. Whereas the roll L z( )
term uses the zero-order hold formulation, as was used in the development of the translational z-
transforms, the pitch M z( )  and yaw N z( ) formulations use the triangular hold, because they are
computed, in sequence, after functions that use the zero-order hold. This preserves the proper
input/output phase relationships between all variables.
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For discrete implementation a normalizing factor is required to preserve the total power integrals
(σ 2 ). Where the ηi z( )  are unity-variance, zero-mean Gaussian variables, the translational z-
transforms are given by
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5 4 32

and, with a sampling switch between translational and rotational filters, the rotational rates become:
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Note that these rotational filters are not  used in the FEAST model.

Difference equations are easily created from these z-transforms. For example, the longitudinal
turbulence velocity becomes
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2
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State space solutions to the turbulence filter equations are preferred because they produce stable
outputs from all stable inputs, independent of the size of the cycle time parameter, and the inputs to
these filters have considerable frequency content. Additionally, the zero-order hold solution
produces an exact solution to a step input, and the triangular hold produces an exact solution to a
linear input. Note that the discrete coefficients must be recomputed whenever velocity or
characteristic length change. Due to the fact that these are “slowly varying” quantities, however, a
practical implementation technique is to distribute the workload of the coefficient-update operation
over a number of computer cycles. In this way the workload becomes competitive with that of less
robust algorithms, and the entire coefficient set is updated in a few computer cycles. This technique
has been used at Ames Research Center for 20 years.
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APPENDIX 3

Conventional Model Rotational Relationships

The system functions, autospectra, and variance are given for the conventional model.

Conventional Model Roll Relationships

The conventional (MIL SPEC) formulation’s roll response may be written in terms of the
independent unity-variance random variable η6 z( )
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For this conventional formulation the roll system function is
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and its variance is computed by the frequency integral from zero to infinity
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Conventional Model Pitch and Yaw Relationships

Where a sampling switch is assumed between the linear and rotational filters, pitch and yaw for the
conventional model are given in z-transform notation by
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The system functions for these rates may be written

q s w s m s
b

V
L

s V L s

s V b s V L

r s v s n s
b

V
L

s V L s

s V b s V L

c w

w

w
w

w

c v

v

v
v

v

( ) = ( ) ( ) =
+( )

+( ) +( )

( ) = ( ) ( ) = −
+( )

+( ) +( )

σ

σ π
π

π

σ

σ π
π

π

4
3

3

4

3
3

3

3

2

2

The autospectra are given by:
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APPENDIX 4

FEAST Model Rotational Relationships

The system functions, autospectra, and variance are given for the FEAST model.

FEAST Model Roll Relationships

Using the properties of random variables, an expression for roll rate in the FEAST model may be
developed. Where dp is the difference between the centers of pressure for the left and right wings,
vertical velocities applied at these points produce a roll rate given by

  

p
w w

ds
r

p
= −

l

These velocities at the centers of pressure are correlated. However, using the previously developed
correlation coefficient the roll rate may be expressed as a function of the two uncorrelated vertical
velocities wL  and wR
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Hence, FEAST’s roll rate in z-transform notation becomes
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and the system function for roll rate is given by
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FEAST’s roll autospectrum is thus a function of the vertical autospectrum
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although roll response is uncorrelated with vertical response. The roll variance is similarly computed
by a frequency integral from zero to infinity.
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FEAST Model Pitch and Yaw Relationships

It can be assumed that w z( )  is created at the fuselage center of pressure without loss of generality if
transport delays are then imposed, which are equivalent to the distances to the horizontal stabilizer
( dq , for pitch rate) and vertical stabilizer ( dr , for yaw rate). The time shifts are a function of the
vehicle velocity

t
d
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t d
V

q
q

r
r

=

=

which, in discrete simulation, are equivalent to selecting and interpolating filtered velocity values
from circular buffers as shown in appendix 1. The pitch and yaw rates in z-transform notation are
then given by
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The individual autospectra thus become
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The generic variance is given by the integral

σ ω ω σ
π

ωτ
ω ω

ω

σ
π ω ω

ωτ
ω

ωτ
ω

Cs s d
a
d a

a

a
d

a
d a

a
a a

a
a

2

0

2

2
0

2 2

2
3

2

2 2 2

2

2 2 2
2

2 2 2 2 2
2

2 2 2

6
1

1

6 1 2
3

1 2
3

= ( ) = −( )
+

−
+( )















=
+

−
+( )

−
+

+
+( )





∞ ∞

∫ ∫Φ cos

cos cos









= − 





− + +( )













= −( ) +









∞

−
−

−

∫ d

a
d a

a
a

e
a

a
a

a e

a e

d

a
a

a

ω

σ
π

π π π π τ

σ τ

τ
τ

τ

0

2

2
2

3
2

3

2
2

6
2

2
3 4 2

2
3 4

1

2 2

From this expression the FEAST model’s pitch and yaw variances are given by
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APPENDIX 5

Discrete Gust Example

To illustrate the influence of the distributed points of application in relationship to a terrain model, a
simplified canyon (or ship deck) is constructed. This model uses two separate terrain altitudes, in a
Cartesian plane, as shown in figure 27.

y

x

h(terrain) = 0 fth(terrain) = 50 ft

ψ
V

PLATEAU CANYON

xF 0( ), yF 0( )[ ]

Figure 27. Terrain elevation.

An aircraft travels at a constant speed (V), at an azimuth angle (ψ ), and at a constant altitude. The
altitude of the aircraft above the plateau is 50 ft, and over the canyon it is 100 ft. For illustrative
purposes, neither the aircraft trajectory nor attitude is influenced by the gusts. The disturbance model
is constructed on this plane such that a vertical (upward) gust of 5 ft/sec is encountered when the
aircraft arrives at the canyon wall. This occurs at x ti( ) = 0, where i F HT VT RW LW= ( ), , , ,  denoting
the fuselage CP, the horizontal tail CP, the vertical tail CP, the right wing CP, and the left wing CP.
As a function of time (t) the points of application are given by

x t x VtF F( ) = ( ) +0 sinψ

x t x t dHT F q( ) = ( ) − sinψ

x t x t dVT F r( ) = ( ) − sinψ

x t x t dRW F p( ) = ( ) + 1
2 cosψ

x t x t dLW F p( ) = ( ) − 1
2 cosψ

y ti( ) values are not required in this example because the y-gust is assumed to be a function of the w-
gust, which is only a function of x ti( ) . For convenience, the vertical gust decays linearly to zero



39

when x ti( )  = 100 ft. Also, a positive y-gust of one-half the magnitude of the vertical gust is assumed
to exist that is independent of the y ti( ) value.
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The discrete gust profile given above leads to asymmetric responses when the canyon is approached
at an angle 

  

ψ = 45o . In order to investigate these responses the initial condition xF 0( )  = –17.68 ft is
used, where V  = 5 ft/sec. The rate of closure on the canyon becomes 3.536 ft/sec, so that it takes
exactly 5 seconds for the fuselage CP to arrive at the canyon. Due to the geometry, (1) the right wing
arrives first at t =3.29 sec, (2) the fuselage CP arrives at t = 5.00 sec, (3) the left wing arrives at
t=6.71 sec, (4) the horizontal tail arrives at t=9.45 sec, and (5) the vertical tail arrives at t=9.62 sec.
The vertical gust velocity that occurs at each of these aircraft locations is given as a function of time
in figure 28.
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Figure 28. Vertical gusts at aircraft locations.

The gusts influence the fuselage CP in translational space. The onset of these gusts thus occur at
t = 5 sec, and they are as shown in figure 29, where the u-gust and v-gust are half the magnitude
of the w-gust.
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Figure 29. Translational gusts at the center of gravity.

Induced rotations occur as the various aerodynamic centers become immersed in the gusts.  Since
the right wing arrives at the canyon at t = 3.29 sec, the roll response begins at this time.  Note that
partial recovery occurs at t = 6.71 sec, when the left wing also becomes immersed in the gust field.
The differential gradient occurs due to the different vertical gust magnitudes, out to a point where
neither wing remains in the gust field. The pitch and yaw responses occur almost simultaneously
because d dq r≈ . These responses are shown in figure 30.
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Figure 30. Rotational response to discrete gusts.

From this example we see that the FEAST model produces atmospheric variations based upon the
specific vehicle geometry in response to terrain-related discrete gusts. This is important in evaluating
responses of different aircraft to the same terrain related (or ship) turbulence and gust profile.

Refinements to the FEAST model await the conversion of an area of CGI-terrain data to an
appropriate form for analysis using computational fluid dynamics, and the application of the
resultant flow-field data to various aircraft simulations.
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